
Distributed Internet Queries

Panayotis Vryonis <panayotis@vrypan.net>

9 October 2004.

A proposal for a decentralized search engine system. --food for thought.

Table of Contents

1. Intro.. ...1
2. Current situation...1
3. Introducing P2P searching..2
4. Suggested Implementation..2

4.1. Initial Request ...3
4.2. Response.. ..3
4.3. Evaluation...3

5. Problems to be solved..4
5.1. Keeping track of visited resources..4
5.2. Results ranking/ordering...4
5.3. Will we ever get to ask the right site?...4
5.4. Implementing DQS will be complicated for most users..4

6. The role of big search engines in a DQS world...4
7. About this document ...4

1. Intro.

The information that exists on the Internet is vast and more is accumulated everyday. By
central indexing, search engines provide order and a certain degree of organization to
this chaotic pool of information.

This approach, however has some drawbacks:
• time lag. Search engines rarely know of recently updated information since they

index periodically
• ignorance. A search engine is agnostic as far as the underlying structure and quality

of the information found on a web site is regarded.
• web-centric. only information exposed trough a web page is indexed.

The introduction of a P2P search standard would allow us to "ask" for information on a
(possibly) real time context, use the internal knowledge of each information storage and
expand search beyond web pages.

2. Current situation

Currently search engines "crawl" web pages and index their contents. "Crawling" consists
of starting from a certain set of web pages (usually acquired from a "directory" such as
DMoz <http://dmoz.org/>), indexing the content of these pages and following the links
they contain.

Some time ago search engines would only index the content of HTML and plain text
pages, nowadays many of them will index MS Word, PDF and other documents as well.
Some of them will even index images, relying on the context, ALT tags and links leading
to them.

Indexing words and phrases is usually not enough. When a user searches for a certain
term he needs more than all the pages including this term. He or she needs to find the
most "important" pages or most "relevant" pages. Each search engine has an internal way
of valuing “importance”, so that more “important” results appear higher than “less
important” ones. Google's "Page Rank" is probably the most well known among these
methods of valuation --and an intuitive one as well.

Even though search engines become more and more "smart" they have to do a lot of
guessing. They may have to guess things like character sets/language and identify same
pages with different URLs. They also have to disregard "common" words such as articles.
Depending on the language, they may even have to identify the same word in many forms
(ex. in Greek verbs will change depending on the subject much like in English we say "I

am, you are, he is").

The process of "crawling" the whole Internet takes time, as a result the information
indexed is almost always outdated in the sense that it may have changed since the page
containing it was last indexed.

And since search engines usually index web pages (or let's say web servers), information
that is not exposed through such a page is hard to find. Take for example a phone
directory, not so important as the AT&T one (for the global public, or US located search
engines), let's say the Greek Telephone Organization (called OTE in Greece). They do
have a web interface to search their directory, <http://www.whitepages.gr/> but if you
search any search engine for a certain Creek telephone number you probably won't get
any results. The same applies to numerous other directories such as Libraries,
Organizations, etc. There is even information stored in web servers that is exposed
partially over the time. A good friend of mine has a full calendar of the Creek name days
and national holidays, but you can only see today's and tomorrow's information on his
web site.

3. Introducing DQS1

I think that the next step in Internet searching is an easy to use Distributed Query
System, DQS. The idea behind such a scheme is to delegate searching to the ones that
know better - the servers/systems holding the data.

The idea is quite close to P2P file sharing systems:
• A node is given a query
• If it knows the answer it returns it (the answer is in this case a set document

description information including it's URL as well as other metadata information such
as document title, modification date, etc.)

• The node may also return URIs to other nodes that could be queried for the same
information.

Recursively, we may go on asking nodes until satisfied with the results gathered.

The above approach has some good advantages, the main being that each node can have
it's own "intelligence" depending on the data it holds. A news server can ignore common
words (like "and", "or", "the") while a dictionary server may respect them and return
grammatical information regarding them. Given a 4-digit number, a library directory may
return books published at that year, while a telephone directory the area using this
number a prefix, and so on.

An other important advantage of the above approach is the selection of "suggested" nodes
returned by a node. This is close to Google's Page Rank system, in the sense that a node
knows (or should know) better where to look for related information.

The DQS model has also some obvious disadvantages. These include increased traffic
between websites, and additional complexity to the web infrastructure (a server has to
answer DQS questions in addition to simple HTTP requests) and administration.
Additionally, it is vague how results should be valued in order to distinguish and rank
"information quality".

An other side-effect could be that the “search topology” of the web will be changed.
Depending on which node we start from we may get different results for the same
search. This is not necessarily a disadvantage but something to be taken into account.

4. Suggested Implementation

When I originally wrote this paper, I thought that the simplest way to implement DQS
whould be to imitate the Google WEB API. The Google Web API does not include any P2P
features. However, it provides a nice and simple way to query Google. It is based on
SOAP, is easy to implement in almost every programming language, is well documented
and easy to extend in order to cover the needs of DQS. The original idea is to implement
the Google Web API on websites and extend this API to support the described DQS
functionality.

1 Monty Python fans may find the acronym funny :-)

Since then, I have come to thing that it would be much simpler to implement DQS using
simple XML POST (over HTTP). I am not an XML expert so I will try to make the examples
so simple that will not even suggest a DTD (document type definition). I would rather
leave this to experts and wait for suggestions.

However this is how I imagine a search using DQS would work

4.1. Initial Request

The initial node is sent a POST request that looks like this:
<query>
<terms>

<operator value=”and”>
<item>php</item>
<item>date functions</item>
<item>examle</item>

</operator>
</terms>
<timeframe> ...</timeframe>
<lang>fr</lang>
</query>
(Side-note: I think it would be nice to use a DTD that can be easily transformed to SQL
queries.)

4.2. Response

The node depending on its knowledge will return an XML document containing (possibly)
2 sections:
a) “local” results (i.e. results known to this node) and b) a list of suggested URLs to look
for more results. One or both of these sections can be empty of course..

<results>
<item>

<title>Item Title</title>
<url>http://server/page.html</url>
<description>This is a description/abstract of the result</description>

</item>
<item>

...
</item>

</results>
<nextnodes>

<item>
<title>A server that could Know More</title>
<url>http://...</url>
<description>My friend's blog</description>

</item>
<item> ... </item>
...

</nextnodes>

4.3. Evaluation

Depending on the results returned, we may stop or go on asking the same query to the
nodes described in the <nextnodes> section.

5. Problems to be solved

5.1. Keeping track of visited resources

A client should be able to remember that it has already queried URL-X and in case an
other site suggests so, it should not query it again. Apart from being more efficient, it will
make it more difficult to get int endless loops.

5.2. Results ranking/ordering

OK. Everything works fine and we end up with 1000 results. How do we order them?
Which ones should be at the top?

5.3. Will we ever get to ask the right site?

Unlike P2P file sharing, we have a much bigger number of possible results. In file sharing
(ex. Music files), it is assumed that the same resource can be found in many locations. On
a DQS model, we are often looking for a resource that is not duplicated around the net.
Depending on the topology created by DQS, and the first node(s) queried, we may be too
far away from our target.

5.4. Implementing DQS will be complicated for most users.

This is true on “personal” and “small” websites, but it should not be crucial. First of all,
an important percentage of these sites use standard engines nowadays, like phpnuke,
drupal, wordpress etc. In addition, an increasing percentage of web-content is created
using what seems to become the “standard web publishing platform”, blog engines. So,
DQS functionality should come with the engine, or even hosting much like webstats. Even
if this is not the case, there could be “third party” DQS servers where one can register a
website, much like we do with search engines now.

6. The role of big search engines in a DQS world

So, will big search engines become obsolete if DQS is widely used? I do not think so.

First of all they will become even better since they will have a better, more intelligent
way to acquire and evaluate data. So, expect them to give you better results.

Then they could become something like the connecting point between disconnected (DQS-
wise) areas. Giving a DQS-enabled site that has computer-related content a tourism-
related query, is not likely to return a usable set of results unless it redirects you to a
“higher” or “general purpose” DQS server – and a perfect match for this role is a big
search engine.

What's more, search engines like Google, Yahoo! and altavista are more than efficient
Internet indexers. They are usable, functional websites. The have invested a lot in
usability, speed, localization, synergies. Users need all that.

7. About this document

I am a freelance programmer, and any knowledge I have regarding the way search
engines work and make money is based on things I read around –I have no way of
knowing how accurate they are.

I am aware that many of the ideas described in this document will bring acronyms such as
RDF, RSS, ATOM, OPML and SOAP to a web developer's mind. I intentionally choose not
to refer to specific technologies or standards, as same of them are conflicting and there
are others more qualified to decide which one fits better DQS.

In any case, this document should be considered “food for thought”. Please let me know
what you think!

